An R function: Exact one/paired sample test for mean(s)

Here I provide a exact one sample or paired sample test for mean(s), which is the exact version of permutation test to compare a single sample against a mean or to compare paired samples’ differences against a mean.

The algorithm in this function is based on Bryan F. J. Manly. 1997. Randomization, bootstrap and Monte Carlo methods in biology. 2nd edition. pp. 91-97. That is, all possible permutations (i.e. all possible cases of exchange between $x_i$ and $\mu$ in one-sample test or all possible cases of exchange between $x_{1i}$ and $x_{2i}$) in paired-sample test are processed to calculate a exact p-value.

R code

Arguments

The usage of this function exactOneOrPairedSampleTest() is very similar to the R built-in function t.test(). There are four arguments:

  • x1: a numeric vector specifying $x_{1i}$
  • x2 = NULL: a numeric vector specifying $x_{2i}$ (in paired-sample case)
  • mu = 0: a number specifying true mean or true difference $\mu$
  • alternative = c("t","g","l")a single character specifying $H_0$: true mean of $x_1$ or mean of $x_{1i} - x_{2i}$ is equal, greater or less than $\mu$, respectively.

Example 1: one-sample test

Let $x_i = \{43,67,64,64,51,53,53,26,36,48,34,48,6 \}$, $i=1 \ldots 13$:

> x <- c(43,67,64,64,51,53,53,26,36,48,34,48,6)

Now we can call the above function exactOneOrPairedSampleTest() to test $H_0$: true mean of $x_i = 56$ against $H_A$: true mean of $x_i \neq 56$:

> test1 <- exactOneOrPairedSampleTest(x, alternative="t", mu=56)
> test1

 Exact one sample test

Alternative hypothesis: true mean is not equal to 56 

mean(x) - mu = -10.3846153846154
Number of total permutation = 8192 
Number of rejected permutation = 364 
P-value = 0.04443359

The results show that:

  • $\sum_{i=1}^{13} x_i / 13 - \mu = 45.61538 - 56 = -10.38462$;
  • Totally $8192 = 2^{13}$ permutations are processed;
  • 364 permutations do not support $H_0$;
  • $P = 364/2^{13} = 0.0444$.

We can also call the function hist.exactOneOrPairedSampleTest():

> hist(test1)

As you can see, the vertical lines $x=\pm 10.38462$ shows the critical boundary of rejecting $H_0$. Note that it is a two-tail test.

Finally, you may call the returned object:

> str(test1)
List of 14
 $ x1          : num [1:13] 43 67 64 64 51 53 53 26 36 48 ...
 $ x2          : NULL
 $ x1.name     : chr "x"
 $ x2.name     : chr "NULL"
 $ n           : int 13
 $ mu          : num 56
 $ test.0      : num -10.4
 $ is.onesample: logi TRUE
 $ alternative : chr "t"
 $ test.perm   : num [1:8192] -10.38 -8.38 -12.08 -10.08 -11.62 ...
 $ DF          :'data.frame': 13 obs. of  3 variables:
  ..$ x1  : num [1:13] 43 67 64 64 51 53 53 26 36 48 ...
  ..$ mu  : num [1:13] 56 56 56 56 56 56 56 56 56 56 ...
  ..$ diff: num [1:13] -13 11 8 8 -5 -3 -3 -30 -20 -8 ...
 $ N           : num 8192
 $ p.value     : num 0.0444
 $ rejected.N  : int 364
 - attr(*, "class")= chr "exactOneOrPairedSampleTest"

to get more details of the results if you need them.

Example 2: paired-sample test

Let $x_{1i} = \{92, 0,72,80,57,76,81,67,50,77,90\}$ and $x_{2i} = \{43,67,64,64,51,53,53,26,36,48,34\}$, where each $i$ is paired and $i=1 \ldots 11$:

> x1 <- c(92, 0,72,80,57,76,81,67,50,77,90)
> x2 <- c(43,67,64,64,51,53,53,26,36,48,34)

Now we can call the function exactOneOrPairedSampleTest() to test $H_0$: true mean of $x_{1i} - x_{2i} \leq 10$ against $H_A$: true mean of $x_{1i} - x_{2i} > 10$:

> test2 <- exactOneOrPairedSampleTest(x1, x2, alternative="g", mu=10)
> # equivalent to test2 <- exactOneOrPairedSampleTest(x1 - x2, alternative="g", mu=10)
> test2
 Exact paired sample test

Alternative hypothesis: means of x1 - x2 is greater than 10
mean((x1)-(x2)) - mu = 8.45454545454546
Number of total permutation = 2048 
Number of rejected permutation = 445 
P-value = 0.2172852 

The results show that:

  • $\sum_{i=1}^{11} (x_{1i}-x_{2i}) / 11 - 10 = 8.45455$;
  • Totally $2048 = 2^{11}$ permutations are processed;
  • 445 permutations do not support $H_0$;
  • $P = 445/2^{11} = 0.2172852$.

We can also call the function hist.exactOneOrPairedSampleTest():

> hist(test2)

As you can see, the vertical lines $x=8.45455$ shows the critical boundary of rejecting $H_0$. Note that this is a right-tail test.

Again, you may call the returned object:

> str(test2)
List of 14
 $ x1          : num [1:11] 92 0 72 80 57 76 81 67 50 77 ...
 $ x2          : num [1:11] 43 67 64 64 51 53 53 26 36 48 ...
 $ x1.name     : chr "x1"
 $ x2.name     : chr "x2"
 $ n           : int 11
 $ mu          : num 10
 $ test.0      : num 8.45
 $ is.onesample: logi FALSE
 $ alternative : chr "g"
 $ test.perm   : num [1:2048] 8.45 1.36 22.45 15.36 8.82 ...
 $ DF          :'data.frame': 11 obs. of  3 variables:
  ..$ x1  : num [1:11] 92 0 72 80 57 76 81 67 50 77 ...
  ..$ x2  : num [1:11] 43 67 64 64 51 53 53 26 36 48 ...
  ..$ diff: num [1:11] 39 -77 -2 6 -4 13 18 31 4 19 ...
 $ N           : num 2048
 $ p.value     : num 0.217
 $ rejected.N  : int 445
 - attr(*, "class")= chr "exactOneOrPairedSampleTest"

to get more details of the results if you need them.