Here I provide a exact one sample or paired sample test for mean(s), which is the exact version of permutation test to compare a single sample against a mean or to compare paired samples’ differences against a mean.
The algorithm in this function is based on Bryan F. J. Manly. 1997. Randomization, bootstrap and Monte Carlo methods in biology. 2nd edition. pp. 91-97. That is, all possible permutations (i.e. all possible cases of exchange between $x_i$ and $\mu$ in one-sample test or all possible cases of exchange between $x_{1i}$ and $x_{2i}$) in paired-sample test are processed to calculate a exact p-value.
R code
Arguments
The usage of this function exactOneOrPairedSampleTest()
is very similar to the R built-in function t.test()
. There are four arguments:
x1
: a numeric vector specifying $x_{1i}$x2 = NULL
: a numeric vector specifying $x_{2i}$ (in paired-sample case)mu = 0
: a number specifying true mean or true difference $\mu$alternative = c("t","g","l")
a single character specifying $H_0$: true mean of $x_1$ or mean of $x_{1i} - x_{2i}$ is equal, greater or less than $\mu$, respectively.
Example 1: one-sample test
Let $x_i = \{43,67,64,64,51,53,53,26,36,48,34,48,6 \}$, $i=1 \ldots 13$:
> x <- c(43,67,64,64,51,53,53,26,36,48,34,48,6)
Now we can call the above function exactOneOrPairedSampleTest()
to test $H_0$: true mean of $x_i = 56$ against $H_A$: true mean of $x_i \neq 56$:
> test1 <- exactOneOrPairedSampleTest(x, alternative="t", mu=56) > test1 Exact one sample test Alternative hypothesis: true mean is not equal to 56 mean(x) - mu = -10.3846153846154 Number of total permutation = 8192 Number of rejected permutation = 364 P-value = 0.04443359
The results show that:
- $\sum_{i=1}^{13} x_i / 13 - \mu = 45.61538 - 56 = -10.38462$;
- Totally $8192 = 2^{13}$ permutations are processed;
- 364 permutations do not support $H_0$;
- $P = 364/2^{13} = 0.0444$.
We can also call the function hist.exactOneOrPairedSampleTest()
:
> hist(test1)
As you can see, the vertical lines $x=\pm 10.38462$ shows the critical boundary of rejecting $H_0$. Note that it is a two-tail test.
Finally, you may call the returned object:
> str(test1) List of 14 $ x1 : num [1:13] 43 67 64 64 51 53 53 26 36 48 ... $ x2 : NULL $ x1.name : chr "x" $ x2.name : chr "NULL" $ n : int 13 $ mu : num 56 $ test.0 : num -10.4 $ is.onesample: logi TRUE $ alternative : chr "t" $ test.perm : num [1:8192] -10.38 -8.38 -12.08 -10.08 -11.62 ... $ DF :'data.frame': 13 obs. of 3 variables: ..$ x1 : num [1:13] 43 67 64 64 51 53 53 26 36 48 ... ..$ mu : num [1:13] 56 56 56 56 56 56 56 56 56 56 ... ..$ diff: num [1:13] -13 11 8 8 -5 -3 -3 -30 -20 -8 ... $ N : num 8192 $ p.value : num 0.0444 $ rejected.N : int 364 - attr(*, "class")= chr "exactOneOrPairedSampleTest"
to get more details of the results if you need them.
Example 2: paired-sample test
Let $x_{1i} = \{92, 0,72,80,57,76,81,67,50,77,90\}$ and $x_{2i} = \{43,67,64,64,51,53,53,26,36,48,34\}$, where each $i$ is paired and $i=1 \ldots 11$:
> x1 <- c(92, 0,72,80,57,76,81,67,50,77,90) > x2 <- c(43,67,64,64,51,53,53,26,36,48,34)
Now we can call the function exactOneOrPairedSampleTest()
to test $H_0$: true mean of $x_{1i} - x_{2i} \leq 10$ against $H_A$: true mean of $x_{1i} - x_{2i} > 10$:
> test2 <- exactOneOrPairedSampleTest(x1, x2, alternative="g", mu=10) > # equivalent to test2 <- exactOneOrPairedSampleTest(x1 - x2, alternative="g", mu=10) > test2 Exact paired sample test Alternative hypothesis: means of x1 - x2 is greater than 10 mean((x1)-(x2)) - mu = 8.45454545454546 Number of total permutation = 2048 Number of rejected permutation = 445 P-value = 0.2172852
The results show that:
- $\sum_{i=1}^{11} (x_{1i}-x_{2i}) / 11 - 10 = 8.45455$;
- Totally $2048 = 2^{11}$ permutations are processed;
- 445 permutations do not support $H_0$;
- $P = 445/2^{11} = 0.2172852$.
We can also call the function hist.exactOneOrPairedSampleTest()
:
> hist(test2)
As you can see, the vertical lines $x=8.45455$ shows the critical boundary of rejecting $H_0$. Note that this is a right-tail test.
Again, you may call the returned object:
> str(test2) List of 14 $ x1 : num [1:11] 92 0 72 80 57 76 81 67 50 77 ... $ x2 : num [1:11] 43 67 64 64 51 53 53 26 36 48 ... $ x1.name : chr "x1" $ x2.name : chr "x2" $ n : int 11 $ mu : num 10 $ test.0 : num 8.45 $ is.onesample: logi FALSE $ alternative : chr "g" $ test.perm : num [1:2048] 8.45 1.36 22.45 15.36 8.82 ... $ DF :'data.frame': 11 obs. of 3 variables: ..$ x1 : num [1:11] 92 0 72 80 57 76 81 67 50 77 ... ..$ x2 : num [1:11] 43 67 64 64 51 53 53 26 36 48 ... ..$ diff: num [1:11] 39 -77 -2 6 -4 13 18 31 4 19 ... $ N : num 2048 $ p.value : num 0.217 $ rejected.N : int 445 - attr(*, "class")= chr "exactOneOrPairedSampleTest"
to get more details of the results if you need them.