Create a NA matrix in R

matrix(data=NA, nrow=3, ncol=5) can create/initiate a 3 × 5 NA matrix on the fly. Of course, matrix(data=0, nrow=3, ncol=5) may be useful in case.

Statistical computing by using R

最近把東海大學生命科學系大學部的生物統計學實驗講義中的 SAS code 全改寫成 R code。內容是如何使用 R 計算常見的統計檢定,包括例題及 R code。該文件以 Creative Commons Attribution-ShareAlike 3.0 Unported License 授權。

View Statistical computing by using R on Scribd

A function of Pearson/Deviance goodness-of-fit for (generalized) linear regression

After an analysis of (generalized) linear regression, a Pearson/Deviance goodness-of-fit test is useful to test if the model fitted reasonably. I wrote a simple function in R to do it.

Source Code

#    Copyright 2011 Chen-Pan Liao 
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    any later version.
#    
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#    
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.

# Usage example:
#   model.name <- glm (...)
#   lm.fit.test(model.name)

lm.fit.test <- function (my.model) {
  df <- my.model$df.residual;
  chisq.pearson <- sum(resid(my.model , type="pearson")^2);
  chisq.deviance <- sum(resid(my.model , type="deviance")^2);
  p.pearson <- pchisq( chisq.pearson , df , lower.tail=F );
  p.deviance <- pchisq( chisq.deviance , df , lower.tail=F );
  ratio.pearson <- chisq.pearson / df;
  ratio.deviance <- chisq.deviance / df;
  cat(
    "Pearson chisq = " , chisq.pearson ,
    ", df = " , df ,
    ", p = " , p.pearson ,
    ", chisq / df = " , chisq.pearson/df ,
    ".\n" ,
    "Deviance chisq = " , chisq.deviance ,
    ", df = " , df ,
    ", p = " , p.deviance ,
    ", chisq / df = " , chisq.deviance/df ,
    ".\n"
  );
}

Usage and example

After defining a glm() model as a custom name, copy the source code into R interpreter and then input lm.fit.test(your.model.name) where your.model.name is the custom glm model name. See the fallowing example

y <- c(rpois(20,1) , rpois(20,2));
x <- gl(2 , 20);
my.model <- glm(y~x , family=poisson);
summary(my.model);
lm.fit.test(my.model);

Games-Howell post-hoc in R

Mr. Shigenobu AOKI displayed a quick R function for both of Tukey and Games-Howell post-hoc comparisons after an ANOVA. The Games-Howell post-hoc is famous for non-equal variances between treatments. Read more on the webpage about Games-Howell post-hoc in R.

邏輯斯迴歸、勝算與勝算比的關係 (logistic regression, odds and odds ratio)

公式一覽

\[ \log ( \text{odd} ) = \text{logit} (p) = \log ( \frac{\Pr (y=1) }{1 - \Pr (y=1)} ) = \beta_0 + \sum_{i=1}^{n} \beta_i x_i \] \[ \text{odd} = \frac{\Pr (y=1) }{1 - \Pr (y=1)} = \exp ( \beta_0 + \sum_{i=1}^{n} \beta_i x_i ) \] \[ \Pr (y=1) = \frac{\text{odd}}{1+\text{odd}} = \frac{1}{1+\text{odd}^{-1}} = \frac{1}{1+\exp (-( \beta_0 + \sum_{i=1}^{n}\beta_i x_i)) } \] \[ \log (\text{odds ratio}) = \log \left( \frac{\text{odd}_1}{\text{odd}_2} \right) = \log(\text{odd}_1) - \log(\text{odd}_2) \]

寫在前面

如何解讀邏輯斯迴歸 (logistic regression) 的迴歸式? 因為我常搞錯邏輯斯迴歸結果與勝算或勝算比的關係, 特書此筆記. 本文最主要的內容是唸過 “FAQ: How do I interpret odds ratios in logistic regression?” 一文後的筆記。

名詞翻譯

  • logistic regression: 邏級式迴歸;
  • odds: 勝算;
  • odds ratio: 勝算比.

請注意 “勝算” 與 “勝算比” 是兩回事.

僅包含常數項的迴歸式

在模型 \[ \text{logit}(p) = \log(\frac{1}{1-p}) = \beta_0,\] 其中 $p$ 為依變數 $y = 1$ 之機率, 而 $y$ 為布林資料 (0 或 1) 以表示肯定或否定. 此時, $\beta_0$ 即為 \[ \log(\frac{\Pr (y = 1)}{\Pr (y = 0)}).\] 說成白話文, $y = 1$ 的機率除以 $y = 0$ 的機率為 $\exp(\beta_0)$.

我以下列資料舉例. 抽樣的 10 名學生中, 有 6 人有手機而 4 人沒有. 計算 “有手機” 對 “無手機” 的勝算為 $\frac{6/10}{4/10} = 1.5$. 在迴歸式中可得 $\text{logit}(p) = \log( \frac{1}{1-p}) = 0.4055$, 可驗證 $\exp(0.4055) = 1.500052$ (因為 $y = 1$ 為有手機而 $y = 0$ 為無手機). 以下為驗證之 R code:

> isPhone<-c(rep(1,6),rep(0,4))
> m<-glm(isPhone~1,family=binomial);summary(m)

Call:
glm(formula = isPhone ~ 1, family = binomial)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.354  -1.354   1.011   1.011   1.011  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   0.4055     0.6455   0.628     0.53

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 13.46  on 9  degrees of freedom
Residual deviance: 13.46  on 9  degrees of freedom
AIC: 15.46

Number of Fisher Scoring iterations: 4

> exp(0.4055)
[1] 1.500052

包含一個二元類別自變數的迴歸式

在模型 \[ \text{logit}(p) = \beta_0 + \beta_1 x_1, \] 其中 $p$ 為依變數 $y = 1$ 之機率而 $y$ 為布林資料 (0 或 1) 以表示肯定或否定, $x_1$ 為二元類別資料並轉換為布林資料 (0 或 1). 此時, $\beta_0$ 即為 $x = 0$ 時 $\log ( \frac{\Pr (y = 1)}{\Pr (y = 0)})$, 而 $\beta_1$ 為 $x_1 = 1$ 對 $x_1 = 0$ 在 $y$ 是否為 1 的勝算比. 說成白話文, $x_1 = 0$ 時 $y = 1$ 的機率除以 $y = 0$ 的機率為 $\exp( \beta_0)$; $x_1 = 1$ 對 $x_1 = 0$ 的勝算比為 $\beta_1$.

我以下列資料舉例. 抽樣的 10 名學生中, 有 6 名男生 4 名女生, 且每人分別擁有手機或沒有, 資料如下:

有無手機男生 (x1 = 1)女生 (x1 = 0)
有 (y = 1)51
無 (y = 0)13
小計64

“男生有手機” 對 “男生無手機” 的勝算為 $\frac{5/6}{1/6} = 5$; “女生有手機” 對 “女生無手機” 的勝算為 $\frac{1/4}{3/4} = 0.3333$; 二者的勝算比為 $5 / 0.3333 = 15$.

在男生 = 1, 女生 = 0, 有手機 = 1, 無手機 = 0 的設定下, 迴歸式中可得 $\text{logit}(p) = -1.099 + 2.708(\text{性別})$, 可驗證 $\exp (-1.099) = 0.3332041$ 為 “女生有手機” 對 “女生無手機” 的勝算 (因為女生的編碼為 $y = 0$); $\exp (2.708) = 14.99925$ 為性別與有無手機的勝算比, 可解釋作 “男生有手機之勝算為女生的 15 倍”. 以下為驗證之 R code:

> isMale<-c(1,1,1,1,1,1,0,0,0,0)
> isPhone<-as.factor(c(1,1,1,1,1,0,0,0,0,1))
> m<-glm(isPhone~isMale,family=binomial);summary(m)

Call:
glm(formula = isMale ~ isPhone, family = binomial)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.8930  -0.7585   0.6039   0.6039   1.6651  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)   -1.099      1.155  -0.951   0.3414  
isMale         2.708      1.592   1.701   0.0889 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 13.4602  on 9  degrees of freedom
Residual deviance:  9.9054  on 8  degrees of freedom
AIC: 13.905

Number of Fisher Scoring iterations: 4

> exp(-1.099)
[1] 0.3332041
> exp(2.708)
[1] 14.99925

包含一連續變數作為自變數的迴歸式

在模型 \[\text{logit}(p) = \beta_0 + \beta_0 x_1,\] 其中 $p$ 為依變數 $y = 1$ 之機率而 $y$ 為布林資料 (0 或 1) 以表示肯定或否定, $x_1$ 為連續型變數. 此時, $\beta_0$ 即為 $x = 0$ 時 $\log (y = 1 \text{對} y = 0 \text{的勝算})$, 而 $\beta_1$ 為 $x_1$ 對勝算的貢獻量. 說成白話文, $x_1=0$ 時 $y = 1$ 的機率除以 $y = 0$ 的機率為 $\exp(\beta_0)$; 若 $x_1 \neq 0$ 時 $y = 1$ 的機率除以 $y = 0$ 的機率為 $\exp (\beta_0 + \beta_1 x_1)$, 而 $\beta_1$ 為正數或負數則影響了勝算的正向或負向影響。

我以下列資料舉例. 抽樣的 10 名學生中, 每人有不同每日零用錢及是否擁有手機, 資料如下:

有無手機 (y, 1 為有, 0 為無)每日零用錢 (x1)
1100
1120
190
1110
1110
080
0100
090
070
0110

上述資料可得回歸式 $\text{logit}(p) = -9.71278 + 0.09840(\text{每日零用錢})$. 由迴歸式可觀察出, 每日零用錢每增加 1 單位則對有手機之勝算增加 $\text{exp}(0.09840) = 1.103404$, 亦表示有無手機在多拿 1 單位零用錢與沒有者的勝算比是 $\exp(\beta_1 \times 1) = 1.103404$,多拿 2 單位則為 $\exp(\beta_1 \times 2)$, 以此類推.

我們可以估計每日零用錢為 70 時有手機對無手機的勝算: $\exp (-9.71278 + 0.09840 \times 70) = 0.05932171$, 可解釋為每日零用錢為 70 的學生中有手機的機率為沒有手機的 0.05932171 倍. 要估算每日零用錢為 75 的勝算亦如法炮製: $\exp( -9.71278 + 0.09840 \times 75) = 0.09702564$. 因此, 二者的勝算比為 $0.09702564 / 0.05932171 = 1.635584$, 也就是 $\exp (0.09840 \times 5)$.

由於$\text{勝算} = p / (1 - p)$, 故可由勝算回推 $p$, 公式為 $p = \text{勝算} / (1 + \text{勝算})$. 前面有談到零用錢為 70 時有手機對無手機的勝算為 0.05932171, 可推得零用錢為 70 時有手機的機率為 $0.05932171 / (1 + 0.05932171) = 0.05599971$. 同理, 每日零用錢為 75 時有手機的機率為 $0.09702564 / (1 + 0.09702564) = 0.08844428$.

> isPhone<-c(1,1,1,1,1,0,0,0,0,0)
> money<-c(100, 120, 90, 110, 110, 80, 100, 90, 70, 110)
> m<-glm(isPhone~money,family=binomial);summary(m)
Call:
glm(formula = isPhone ~ money, family = binomial)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.67078  -0.76661   0.07113   0.75438   1.55604  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.71278    6.59477  -1.473    0.141
money        0.09840    0.06574   1.497    0.134

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 13.863  on 9  degrees of freedom
Residual deviance: 10.481  on 8  degrees of freedom
AIC: 14.481

Number of Fisher Scoring iterations: 4

結論

  • 邏輯斯迴歸的迴歸式 $\log ( \text{odd} ) = \text{logit} (p) = \log \left( \frac{\Pr (y=1) }{1 - \Pr (y=1)} \right) = \beta_0 + \sum_{i=1}^{n} \beta_i x_i$ 所加總得到的數值是 log(勝算), 故 exp(logit(p)) = 勝算;
  • 將二個勝算相除可以得到勝算比;
  • 可由勝算回推機率, 公式為機率 = 勝算 / (1 + 勝算);
  • 因為指數與對數在運算上的特性, log(勝算比) 常成為二個 logit(p) 相加減之結果.
  • 若不解, 一切回歸到 “log(勝算) = log (p/(1 - p)) = 迴歸式” 及 “勝算比 = 勝算1 / 勝算2” 的基本概念, 再往下推導.

Least-significant difference (LSD) in R

How to apply LSD (as a kind of multiple comparisons after ANOVA) in R?

A dataset for typical one-way ANOVA is given:

y <- rnorm(40)
x <- gl(4,10)
m <- aov(y~x)

Applying LSD by using function pairwise.t.test:

pairwise.t.test(y,x,p.adj="none")

Applying LSD by using function LSD.test from package agricolae:

library(agricolae)
LSD.test(m,"x",group=T) # with grouping
LSD.test(m,"x",group=F) # without grouping

Specifying a reference level in R: function relevel

How to specify a specific level as a reference level in GNU R while applying (generalized) linear regression?

A dataframe dt is given:

y<-rpois(40,1)
x1<-gl(4,10)
x2<-gl(4,1,40)
dt <- data.frame(cbind(y,x1,x2))

Applying poisson regression:

m1<-glm(y~factor(x1)+factor(x2),data=dt)
summary(m1)

The output shows x1=1 and x2=1 are both reference level defined by R automatically. To switch the reference level from x1=1 to x1=2, the function relevel could be used:

m2<-glm(y~relevel(factor(dt$x1),"2")+factor(x2),data=dt)
summary(m2)